开关电源的基本控制原理
(相关资料图)
一、开关电源的控制结构
一般地,开关电源大致由输入电路、变换器、控制电路、输出电路四个主体组成。
如果细致划分,它包括:输入滤波、输入整流、开关电路、采样、基准电源、比较放大、震荡器、V/F转换、基极驱动、输出整流、输出滤波电路等。
实际的开关电源还要有保护电路、功率因素校正电路、同步整流驱动电路及其它一些辅助电路等。
下面是一个典型的开关电源原理框图,掌握它对我们理解开关电源有重要意义。
图1:开关电源的基本结构框图
根据控制类型不同,PM(脉冲调制)电路可能有多种形式。这里是典型的PFM结构。
二、开关电源的构成原理
(一)输入电路:
线性滤波电路、浪涌电流抑制电路、整流电路。
作用:把输入电网交流电源转化为符合要求的开关电源直流输入电源。
1.线性滤波电路:
抑制谐波和噪声。
2.浪涌滤波电路:
抑制来自电网的浪涌电流。
3.整流电路:
把交流变为直流。
有电容输入型、扼流圈输入型两种,开关电源多数为前者。
(二)变换电路:
含开关电路、输出隔离(变压器)电路等,是开关电源电源变换的主通道,完成对带有功率的电源波形进行斩波调制和输出。
这一级的开关功率管是其核心器件。
1.开关电路
驱动方式:自激式、他激式。
变换电路:隔离型、非隔离型、谐振型。
功率器件:最常用的有GTR、MOSFET、IGBT。
调制方式:PWM、PFM、混合型三种。PWM最常用。
2.变压器输出
分无抽头、带抽头。半波整流、倍流整流时,无须抽头,全波时必须有抽头。
(三)控制电路:
向驱动电路提供调制后的矩形脉冲,达到调节输出电压的目的。
基准电路:提供电压基准。如并联型基准LM358、AD589,串联型基准AD581、REF192等。
采样电路:采取输出电压的全部或部分。
比较放大:把采样信号和基准信号比较,产生误差信号,用于控制电源PM电路。
V/F变换:把误差电压信号转换为频率信号。
振荡器:产生高频振荡波。
基极驱动电路:把调制后的振荡信号转换成合适的控制信号,驱动开关管的基极。
(四)输出电路:
整流、滤波。
把输出电压整流成脉动直流,并平滑成低纹波直流电压。输出整流技术现在又有半波、全波、恒功率、倍流、同步等整流方式。
各类拓扑结构电源分析
一、非隔离型开关变换器
(一)降压变换器
Buck电路:降压斩波器,入出极性相同。
由于稳态时,电感充放电伏秒积相等,因此:
(Ui-Uo)ton=Uotoff,
Uiton-Uoton=Uo*toff,
Ui*ton=Uo(ton+toff),
Uo/Ui=ton/(ton+toff)= Δ
即,输入输出电压关系为:
Uo/Ui=Δ(占空比)
图2:Buck电路拓补结构
在开关管S通时,输入电源通过L平波和C滤波后向负载端提供电流;当S关断后,L通过二极管续流,保持负载电流连续。输出电压因为占空比作用,不会超过输入电源电压。
(二)升压变换器
Boost电路:升压斩波器,入出极性相同。
利用同样的方法,根据稳态时电感L的充放电伏秒积相等的原理,可以推导出电压关系:
Uo/Ui=1/(1-Δ)
图3:Boost电路拓补结构
这个电路的开关管和负载构成并联。在S通时,电流通过L平波,
电源对L充电。当S断时,L向负载及电源放电,输出电压将是输入电压Ui+UL,因而有升压作用。
(三)逆向变换器
Buck-Boost电路:升/降压斩波器,入出极性相反,电感传输。
电压关系:Uo/Ui=-Δ/(1-Δ)
图4:Buck-Boost电路拓补结构
S通时,输入电源仅对电感充电,当S断时,再通过电感对负载放电来实现电源传输。
所以,这里的L是用于传输能量的器件。
(四)丘克变换器
Cuk电路:升/降压斩波器,入出极性相反,电容传输。
电压关系:Uo/Ui=-Δ/(1-Δ)。
图5:Cuk变换器电路拓补结构
当开关S闭合时,Ui对L1充电。当S断开时,Ui+EL1通过VD对C1进行充电。再当S闭合时,VD关断,C1通过L2、C2滤波对负载放电,L1继续充电。
这里的C1用于传递能量,而且输出极性和输入相反。
二、隔离型开关变换器
1.推挽型变换器
下面是推挽型变换器的电路。
图6:推挽型变换电路
S1和S2轮流导通,将在二次侧产生交变的脉动电流,经过全波整流转换为直流信号,再经L、C滤波,送给负载。
由于电感L在开关之后,所以当变比为1时,它实际上类似于降压变换器。
2.半桥型变换器
图2-6给出了半桥型变换器的电路图。
当S1和S2轮流导通时,一次侧将通过电源-S1-T-C2-电源及电源-C1-T-S2-电源产生交变电流,从而在二次侧产生交变的脉动电流,经过全波整流转换为直流信号,再经L、C滤波,送给负载。
同样地,这个电路也相当于降压式拓补结构。
图7:半桥式变换电路
3.全桥型变换器
下图是全桥变换器电路。
图8:全桥式变换电路
当S1、S3和S2、S4两两轮流导通时,一次侧将通过电源-S2-T-S4-电源及电源-S1-T-S3-电源产生交变电流,从而在二次侧产生交变的脉动电流,经过全波整流转换为直流信号,再经L、C滤波,送给负载。
这个电路也相当于降压式拓补结构。
4.正激型变换器
下图为正激式变换器。
图9:正激型变换器电路
当S导通时,原边经过输入电源-N1-S-输入电源,产生电流。当S断开时,N1能量转移到N3,经N3-电源-VD3向输入端释放能量,避免变压器过饱和。VD1用于整流,VD2用于S断开期间续流。
5.隔离型Cuk变换器
隔离型Cuk变换器电路如下所示:
图10:隔离型Cuk变换器
当S导通时,Ui对L1充电。当S断开时,Ui+EL1对C11及变压器原边放电,同时给C11充电,电流方向从上向下。附边感应出脉动直流信号,通过VD对C12反向充电。在S导通期间,C12的反压将使VD关断,并通过L2、C2 滤波后,对负载放电。
这里的C12明显是用于传递能量的,所以Cuk电路是电容传输变换电路。
6.电流变换器
能量回馈型电流变换器电路如下图所示。
(N3同名端反了)
图11:能量回馈型电流变换器电路
该电路与推挽电路类似。不同的是,在主通路上串联了一个电感。其作用是在S1、S2断开期间,使得变压器能量转移到N3绕组,通过VD3回馈到输入端。
下面是升压型变换器的电路图:
图12:升压型电流变换器电路
该电路也与推挽电路类似,并在主通路上串联了一个电感。在开关导通期间,L积蓄能量。当一侧开关断开时,电感电动势和Ui叠加在一起,对另一侧放电。因此,L有升压作用。
三、准谐振型变换器
在脉冲调制电路中,加入R、L谐振电路,使得流过开关的电流及管子两端的压降为准正弦波。这种开关电源成为谐振式开关电源。
利用一定的控制技术,可以实现开关管在电流或电压波形过零时切换,这样对缩小电源体积,增大电源控制能力,提高开关速度,改善纹波都有极大好处。所以谐振开关电源是当前开关电源发展的主流技术。又分为:
1.ZCS——零电流开关。开关管在零电流时关断。
2.ZVS——零电压开关。开关管在零电压时关断。
具体关于这个技术的简单介绍,见后面相关内容。
四、开关电源的分类总结
开关电源的分类
(一)按控制方式:
脉冲调制变换器:驱动波形为方波。PWM、PFM、混合式。
谐振式变换器:驱动波形为正弦波。又分ZCS(零电流谐振开关)、ZVS(零电压谐振开关)两种。
(二)按电压转换形式:
1.AC/DC:一次电源。
即整流电源。
2.DC/DC:二次电源。
1)Buck电路:降压斩波器,入出极性相同。
2)Boost:升压斩波器,入出极性相同。
3)Buck-Boost:升/降压斩波器,入出极性相反,电感传输。
4)Cuk:升/降压斩波器,入出极性相反,电容传输。
(三)按拓补结构:
1.隔离型:有变压器。
2.非隔离型:无变压器。
审核编辑:汤梓红
标签: