linux系统中内存分配基本原理分析

2023-03-28 09:11:07 来源:嵌入式开发爱好者

第一:linux系统中内存分配关注问题

在编写Linux驱动过程中,不可避免涉及外设操作,而外设地址空间与DDR地址空间一般不连续,在linux上电时,并不会为外设地址空间建立页表,又因为linux访问内存使用的都是虚拟地址,因此如果想访问外设的寄存器(一般包括数据寄存器、控制寄存器与状态寄存器),需要在驱动初始化中将外设所处的物理地址映射为虚拟地址,linux为应对该问题提供了较多接口,包括:ioremap/ioremap_wc/devm_ioremap/devm_ioremap_resource等,以应对不同的场景需求,本文即阐述这些接口的使用,以及需要注意的区别。

第二:场景的应用背景


(相关资料图)

在系统运行时,外设IO资源的物理地址是已知的,由硬件的设计决定(参考SOC的datesheet,一般会有memorymap)。驱动程序不能通过物理地址访问IO资源,必须将其映射到内核态的虚拟地址空间(通过页表)[1],然后根据映射所得到的内核虚拟地址范围,通过线性偏移(virt_addr = virt_base + phy_addr - phy_base)访问这些IO内存资源。

代码路径:arch/arm/include/asm/io.h/*                                                                                                  349  * ioremap() and friends.                                                                           350  *                                                                                                  351  * ioremap() takes a resource address, and size.  Due to the ARM memory                             352  * types, it is important to use the correct ioremap() function as each                             353  * mapping has specific properties.                                                                 354  *                                                                                                  355  * Function             Memory type     Cacheability    Cache hint                                  356  * ioremap()            Device          n/a             n/a                                         357  * ioremap_nocache()    Device          n/a             n/a                                         358  * ioremap_cache()      Normal          Writeback       Read allocate                               359  * ioremap_wc()         Normal          Non-cacheable   n/a                                         360  * ioremap_wt()         Normal          Non-cacheable   n/a                                         361  *                                                                                                  362  * All device mappings have the following properties:                                               363  * - no access speculation                                                                          364  * - no repetition (eg, on return from an exception)                                                365  * - number, order and size of accesses are maintained                                              366  * - unaligned accesses are "unpredictable"                                                         367  * - writes may be delayed before they hit the endpoint device                                      368  *                                                                                                  369  * ioremap_nocache() is the same as ioremap() as there are too many device                          370  * driversusing this for device registers, and documentation which tells                           371  * people to use it for such for this to be any different.  This is not a      372  * safefallback for memory-like mappings, or memory regions where the                              373  * compiler may generate unaligned accesses - eg, via inlining its own                              374  * memcpy.                                                                                          375  *                                                                                                  376  * All normal memory mappings have the following properties:                                        377  * - reads canbe repeated with no side effects                                                     378  * - repeated reads return the last value written                                                   379  * - reads can fetch additional locations without side effects                                      380  * - writes can be repeated (in certain cases) with no side effects                                 381  * - writes can be merged before accessing the target                                               382  * - unaligned accesses can be supported                                                            383  * - ordering is not guaranteed without explicit dependencies or barrier                            384  *   instructions                                                                                   385  * - writes may be delayed before they hit the endpoint memory                                      386  *                                                                                                  387  * The cache hint is only a performance hint: CPUs may alias these hints.                           388  * Eg, a CPU not implementing read allocate but implementing write allocate                         389  * will provide a write allocate mapping instead.                                                   390*/

ioremap函数组共有五个接口,根据函数实现可以分为三类:

ioremap & ioremap_nocache实现相同,使用场景为映射device memory类型内存;

ioremap_cached,使用场景为映射normal memory类型内存,且映射后的虚拟内存支持cache;

ioremap_wc & ioremap_wt实现相同,使用场景为映射normal memory类型内训,且映射后的虚拟内存不支持cache。

第三:何为memory type?

内存类型(memory type)分为设备(device)类型与一般(normal)类型。

第四:ioremap & ioremap_nocache

代码路径:arch/arm/include/asm/io.hvoid __iomem *ioremap(resource_size_t res_cookie, size_t size);#define ioremap ioremap                                                                     #define ioremap_nocache ioremap

ioremap用来映射memory type为device memory的设备,同时不使用cache(device memory本身就没有cacheable这个属性),即CPU的读写操作直接操作设备内存。ioremap_nocache的实现与ioremap完全相同,保留该符号是因为向后兼容使用ioremap_nocache接口的驱动程序。

API接口中的res_cookie参数是需要映射的物理地址,size参数是需要映射的内存大小,单位是Byte。不需要考虑物理地址的页对齐问题,底层通过PAGE_ALIGN接口完成了页对齐。

第五:ioremap_cached

/*                                                                                                  * Do not use ioremap_cached in new code. Provided for the benefit of                               * the pxa2xx-flash MTD driver only.                                                                 */                                                                                                 void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size);

ioremap_cached用来映射memory type为normal memory的设备,同时使用cache,这会提高内存的访问速度,提高系统的性能。

第六:ioremap_wc & ioremap_wt

void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size);                                  #define ioremap_wc ioremap_wc                                                                       #define ioremap_wt ioremap_wc

ioremap_wc用来映射memory type为normal memory的设备,同时不使用cache。

第七:解映射API

代码路径:arch/arm/include/asm/io.hvoidiounmap(volatilevoid__iomem*iomem_cookie);

不论采用以上哪种映射方式,解映射为统一接口,其中iomem_cookie参数为映射后的虚拟地址。

第八:IO资源读写过程

我们已经知道如何映射和解映射虚拟内存,内存映射是为了访问,理论上这时候可以像读写RAM那样直接通过虚拟地址指针读写IO内存资源,但是为了保证驱动程序跨平台的可移植性【这一点还不太理解,直接指针操作怎么影响的移植性,望大家指教】,我们应该采用linux中特定的接口函数来访问IO内存[1]。常用接口如下:

代码路径:arch/arm/include/asm/io.h299 #define readb(c)                ({ u8  __v = readb_relaxed(c); __iormb(); __v; })                   300 #define readw(c)                ({ u16 __v = readw_relaxed(c); __iormb(); __v; })                   301 #define readl(c)                ({ u32 __v = readl_relaxed(c); __iormb(); __v; })                                                                                                                        303 #define writeb(v,c)             ({ __iowmb(); writeb_relaxed(v,c); })                               304 #define writew(v,c)             ({ __iowmb(); writew_relaxed(v,c); })                               305 #define writel(v,c)             ({ __iowmb(); writel_relaxed(v,c); })         316 static inline void memset_io(volatile void __iomem *dst, unsigned c,                                size_t count);324 static inline void memcpy_fromio(void *to, const volatile void __iomem *from,                         size_t count);332staticinlinevoidmemcpy_toio(volatilevoid__iomem*to,constvoid*from,size_tcount);

审核编辑:汤梓红

标签:

上一篇:
下一篇: