详解二极管的反向恢复过程

2023-03-16 12:09:18 来源:头条号手机硬知识

二极管的反向恢复过程


(相关资料图)

一、二极管的反向恢复过程

在下图的电路中,V上输入如下的电压波形:

则二极管上的电流波形如下:

可以看到,当通入正向电压时,二极管导通,二极管上的电流为I1,当通入的电压突然反向时,二极管上的电流也瞬间反向了,随后才变小,进而进入反向截止状态。这个现象就叫二极管的反向恢复。反向电流保持不变的这段时间称为储存时间ts,反向电流由I2下降到0.1I2所需的时间称为下降时间tf。储存时间和下降时间之和(ts+tf)称为反向恢复时间。二极管反向截止后还存在的电流被称为二极管的反向漏电流IR。

二、二极管反向恢复现象的解释

在二极管的PN节上,当外加正向电压时,P区的空穴向N区扩散,N区的电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴 ,它们都是非平衡少数载流子,如下图所示。

空穴由P区扩散到N区后,并不是立即与N区中的电子复合而消失,而是在一定的路程LP(扩散长度)内,一方面继续扩散,一方面与电子复合消失,这样就会在LP范围内存储一定数量的空穴,并建立起一定空穴浓度分布,靠近结边缘的浓度最大,离结越远,浓度越小 。正向电流越大,存储的空穴数目越多,浓度分布的梯度也越大。电子扩散到P区的情况也类似,下图为二极管中存储电荷的分布。

我们把正向导通时,非平衡少数载流子积累的现象叫做电荷存储效应。

当输入电压突然由正向变为反向时P区存储的电子和N区存储的空穴不会马上消失,但它们将通过下列两个途径逐渐减少:

① 在反向电场作用下,P区电子被拉回N区,N区空穴被拉回P区,形成反向漂移电流IR,如下图所示;

②与多数载流子复合。

在这些存储电荷消失之前,PN结仍处于正向偏置,即势垒区仍然很窄,PN结的电阻仍很小,与电路中的负载电阻相比可以忽略,所以此时反向电流IR=(反向电压VR+VD)/负载电阻RL。VD表示PN结两端的正向压降,一般 VR>>VD,即 IR=VR/RL。在这段期间,IR基本上保持不变,主要由VR和RL所决定。

经过时间ts后P区和N区所存储的电荷已显著减小,势垒区逐渐变宽,反向电流IR逐渐减小到正常反向饱和电流的数值,经过时间tf,二极管转为截止。

由上可知,二极管在开关转换过程中出现的反向恢复过程,实质上由于非平衡少数载流子的电荷存储效应引起的,反向恢复时间就是存储电荷消失所需要的时间。

标签:

上一篇:
下一篇: