在Python中,想要实现多任务除了使用进程,还可以使用线程来完成,线程是实现多任务的另外一种方式。
线程是进程中执行代码的一个分支,每个执行分支(线程)要想工作执行代码需要cpu进行调度 ,也就是说线程是cpu调度的基本单位,每个进程至少都有一个线程,而这个线程就是我们通常说的主线程。
【资料图】
多线程可以完成多任务
多线程效果图:
#导入线程模块import threading
Thread([group [, target [, name [, args [, kwargs]]]]])
group: 线程组,目前只能使用Nonetarget: 执行的目标任务名args: 以元组的方式给执行任务传参kwargs: 以字典方式给执行任务传参name: 线程名,一般不用设置启动线程使用start方法
import threadingimport time# 唱歌任务def sing(): # 扩展: 获取当前线程 # print("sing当前执行的线程为:", threading.current_thread()) for i in range(3): print("正在唱歌...%d" % i) time.sleep(1)# 跳舞任务def dance(): # 扩展: 获取当前线程 # print("dance当前执行的线程为:", threading.current_thread()) for i in range(3): print("正在跳舞...%d" % i) time.sleep(1)if __name__ == "__main__": # 扩展: 获取当前线程 # print("当前执行的线程为:", threading.current_thread()) # 创建唱歌的线程 # target: 线程执行的函数名 sing_thread = threading.Thread(target=sing) # 创建跳舞的线程 dance_thread = threading.Thread(target=dance) # 开启线程 sing_thread.start() dance_thread.start()执行结果:正在唱歌...0正在跳舞...0正在唱歌...1正在跳舞...1正在唱歌...2正在跳舞...2
前面我们使用线程执行的任务是没有参数的,假如我们使用线程执行的任务带有参数,如何给函数传参呢?
Thread类执行任务并给任务传参数有两种方式:
args 表示以元组的方式给执行任务传参kwargs 表示以字典方式给执行任务传参示例代码:import threadingimport time# 带有参数的任务def task(count): for i in range(count): print("任务执行中..") time.sleep(0.2) else: print("任务执行完成")if __name__ == "__main__": # 创建子线程 # args: 以元组的方式给任务传入参数 sub_thread = threading.Thread(target=task, args=(5,)) sub_thread.start()执行结果:任务执行中..任务执行中..任务执行中..任务执行中..任务执行中..任务执行完成
示例代码:import threadingimport time# 带有参数的任务def task(count): for i in range(count): print("任务执行中..") time.sleep(0.2) else: print("任务执行完成")if __name__ == "__main__": # 创建子线程 # kwargs: 表示以字典方式传入参数 sub_thread = threading.Thread(target=task, kwargs={"count": 3}) sub_thread.start()执行结果:任务执行中..任务执行中..任务执行中..任务执行完成
import threadingimport timedef task(): time.sleep(1) print("当前线程:", threading.current_thread().name)if __name__ == "__main__": for _ in range(5): sub_thread = threading.Thread(target=task) sub_thread.start() 执行结果:当前线程: Thread-1当前线程: Thread-2当前线程: Thread-4当前线程: Thread-5当前线程: Thread-3
说明:
线程之间执行是无序的,它是由cpu调度决定的 ,cpu调度哪个线程,哪个线程就先执行,没有调度的线程不能执行。进程之间执行也是无序的,它是由操作系统调度决定的,操作系统调度哪个进程,哪个进程就先执行,没有调度的进程不能执行。假如我们现在创建一个子线程,这个子线程执行完大概需要2.5秒钟,现在让主线程执行1秒钟就退出程序,查看一下执行结果,
示例代码如下:import threadingimport time# 测试主线程是否会等待子线程执行完成以后程序再退出def show_info(): for i in range(5): print("test:", i) time.sleep(0.5)if __name__ == "__main__": sub_thread = threading.Thread(target=show_info) sub_thread.start() # 主线程延时1秒 time.sleep(1) print("over")执行结果:test: 0test: 1overtest: 2test: 3test: 4说明:通过上面代码的执行结果,我们可以得知: 主线程会等待所有的子线程执行结束再结束假如我们就让主线程执行1秒钟,子线程就销毁不再执行,那怎么办呢?我们可以设置守护主线程守护主线程:守护主线程就是主线程退出子线程销毁不再执行设置守护主线程有两种方式: threading.Thread(target=show_info, daemon=True) 线程对象.setDaemon(True)设置守护主线程的示例代码:import threadingimport time# 测试主线程是否会等待子线程执行完成以后程序再退出def show_info(): for i in range(5): print("test:", i) time.sleep(0.5)if __name__ == "__main__": # 创建子线程守护主线程 # daemnotallow=True 守护主线程 # 守护主线程方式1 sub_thread = threading.Thread(target=show_info, daemon=True) # 设置成为守护主线程,主线程退出后子线程直接销毁不再执行子线程的代码 # 守护主线程方式2 # sub_thread.setDaemon(True) sub_thread.start() # 主线程延时1秒 time.sleep(1) print("over")执行结果:test: 0test: 1over
需求:
定义一个列表类型的全局变量创建两个子线程分别执行向全局变量添加数据的任务和向全局变量读取数据的任务查看线程之间是否共享全局变量数据import threadingimport time# 定义全局变量my_list = list()# 写入数据任务def write_data(): for i in range(5): my_list.append(i) time.sleep(0.1) print("write_data:", my_list)# 读取数据任务def read_data(): print("read_data:", my_list)if __name__ == "__main__": # 创建写入数据的线程 write_thread = threading.Thread(target=write_data) # 创建读取数据的线程 read_thread = threading.Thread(target=read_data) write_thread.start() # 延时 # time.sleep(1) # 主线程等待写入线程执行完成以后代码在继续往下执行 write_thread.join() print("开始读取数据啦") read_thread.start() 执行结果:write_data: [0, 1, 2, 3, 4]开始读取数据啦read_data: [0, 1, 2, 3, 4]
需求:
定义两个函数,实现循环100万次,每循环一次给全局变量加1创建两个子线程执行对应的两个函数,查看计算后的结果import threading# 定义全局变量g_num = 0# 循环一次给全局变量加1def sum_num1(): for i in range(1000000): global g_num g_num += 1 print("sum1:", g_num)# 循环一次给全局变量加1def sum_num2(): for i in range(1000000): global g_num g_num += 1 print("sum2:", g_num)if __name__ == "__main__": # 创建两个线程 first_thread = threading.Thread(target=sum_num1) second_thread = threading.Thread(target=sum_num2) # 启动线程 first_thread.start() # 启动线程 second_thread.start() 执行结果:sum1: 1210949sum2: 1496035注意点:多线程同时对全局变量操作数据发生了错误错误分析:两个线程first_thread和second_thread都要对全局变量g_num(默认是0)进行加1运算,但是由于是多线程同时操作,有可能出现下面情况:1. 在g_num=0时,first_thread取得g_num=0。此时系统把first_thread调度为”sleeping”状态,把second_thread转换为”running”状态,t2也获得g_num=02. 然后second_thread对得到的值进行加1并赋给g_num,使得g_num=13. 然后系统又把second_thread调度为”sleeping”,把first_thread转为”running”。线程t1又把它之前得到的0加1后赋值给g_num。4. 这样导致虽然first_thread和first_thread都对g_num加1,但结果仍然是g_num=1全局变量数据错误的解决办法:线程同步: 保证同一时刻只能有一个线程去操作全局变量 同步: 就是协同步调,按预定的先后次序进行运行。如:你说完,我再说, 好比现实生活中的对讲机线程同步的方式:1. 线程等待(join)2. 互斥锁线程等待的示例代码:import threading# 定义全局变量g_num = 0# 循环1000000次每次给全局变量加1def sum_num1(): for i in range(1000000): global g_num g_num += 1 print("sum1:", g_num)# 循环1000000次每次给全局变量加1def sum_num2(): for i in range(1000000): global g_num g_num += 1 print("sum2:", g_num)if __name__ == "__main__": # 创建两个线程 first_thread = threading.Thread(target=sum_num1) second_thread = threading.Thread(target=sum_num2) # 启动线程 first_thread.start() # 主线程等待第一个线程执行完成以后代码再继续执行,让其执行第二个线程 # 线程同步: 一个任务执行完成以后另外一个任务才能执行,同一个时刻只有一个任务在执行 first_thread.join() # 启动线程 second_thread.start() 执行结果:sum1: 1000000sum2: 2000000
互斥锁: 对共享数据进行锁定,保证同一时刻只能有一个线程去操作。
注意:
互斥锁是多个线程一起去抢,抢到锁的线程先执行,没有抢到锁的线程需要等待,等互斥锁使用完释放后,其它等待的线程再去抢这个锁。threading模块中定义了Lock变量,这个变量本质上是一个函数,通过调用这个函数可以获取一把互斥锁。
互斥锁使用步骤:
# 创建锁mutex = threading.Lock()# 上锁mutex.acquire()...这里编写代码能保证同一时刻只能有一个线程去操作, 对共享数据进行锁定...# 释放锁mutex.release()
注意点:
acquire和release方法之间的代码同一时刻只能有一个线程去操作如果在调用acquire方法的时候 其他线程已经使用了这个互斥锁,那么此时acquire方法会堵塞,直到这个互斥锁释放后才能再次上锁。import threading# 定义全局变量g_num = 0# 创建全局互斥锁lock = threading.Lock()# 循环一次给全局变量加1def sum_num1(): # 上锁 lock.acquire() for i in range(1000000): global g_num g_num += 1 print("sum1:", g_num) # 释放锁 lock.release()# 循环一次给全局变量加1def sum_num2(): # 上锁 lock.acquire() for i in range(1000000): global g_num g_num += 1 print("sum2:", g_num) # 释放锁 lock.release()if __name__ == "__main__": # 创建两个线程 first_thread = threading.Thread(target=sum_num1) second_thread = threading.Thread(target=sum_num2) # 启动线程 first_thread.start() second_thread.start() # 提示:加上互斥锁,那个线程抢到这个锁我们决定不了,那线程抢到锁那个线程先执行,没有抢到的线程需要等待 # 加上互斥锁多任务瞬间变成单任务,性能会下降,也就是说同一时刻只能有一个线程去执行 执行结果:sum1: 1000000sum2: 2000000说明:通过执行结果可以地址互斥锁能够保证多个线程访问共享数据不会出现数据错误问题
死锁: 一直等待对方释放锁的情景就是死锁
说明:
现实社会中,男女双方一直等待对方先道歉的这种行为就好比是死锁。
死锁的结果
会造成应用程序的停止响应,不能再处理其它任务了。需求:
根据下标在列表中取值, 保证同一时刻只能有一个线程去取值
import threadingimport time# 创建互斥锁lock = threading.Lock()# 根据下标去取值, 保证同一时刻只能有一个线程去取值def get_value(index): # 上锁 lock.acquire() print(threading.current_thread()) my_list = [3,6,8,1] # 判断下标释放越界 if index >= len(my_list): print("下标越界:", index) return value = my_list[index] print(value) time.sleep(0.2) # 释放锁 lock.release()if __name__ == "__main__": # 模拟大量线程去执行取值操作 for i in range(30): sub_thread = threading.Thread(target=get_value, args=(i,)) sub_thread.start()
import threadingimport time# 创建互斥锁lock = threading.Lock()# 根据下标去取值, 保证同一时刻只能有一个线程去取值def get_value(index): # 上锁 lock.acquire() print(threading.current_thread()) my_list = [3,6,8,1] if index >= len(my_list): print("下标越界:", index) # 当下标越界需要释放锁,让后面的线程还可以取值 lock.release() return value = my_list[index] print(value) time.sleep(0.2) # 释放锁 lock.release()if __name__ == "__main__": # 模拟大量线程去执行取值操作 for i in range(30): sub_thread = threading.Thread(target=get_value, args=(i,)) sub_thread.start()