Java8实战之Stream

2022-12-13 15:06:36 来源:51CTO博客

Java8实战之Stream

前言

在前面一个小节中,我们已经学习了行为参数化以及Lambda表达式,通过Lambda表达式,可以使得代码更加简洁,尤其是当一个方法只需要使用一次的时候,然而,如果Java8中只有Lambda表达式的话,那还是不足以让人感到兴奋的,个人感觉,Java8中最有意思,也是最方便的功能,莫过于​​Stream​​了

Stream初窥

​Stream​​可以翻译为流,实际上其操作也是,流操作是Java8中引入的新功能,提供了更加强大的数据迭代处理方式,通过流式写法,提供了简洁的语法,主要注意的是​​Stream​​需要配合Lambda表达式来使用,这更加体现了行为参数化的思想,Java8通过将既定的操作封装好,同时,将对应的具体行为留给用户,极大地提高了操作的效率。

​Stream​​的出现,可以说是用于替代传统的容器操作的,在传统的容器操作中,当需要对容器中的某些元素进行操作的时候,我们需要迭代容器,然后筛选出合适的对象,然后再将其存放到另外的容器中,从上面的描述中,可以看到,其中的很大一部分操作:迭代容器,筛选对象,重新存放基本都是固定的,而每次都进行手动操作,显然是比较繁琐的,​​Stream​​则提供了更加便捷的操作,只需要通过对应的操作模式,然后给出对应的条件,即可实现对既定元素的操作。


【资料图】

为了下面的操作方便,我们先构造需要的元素

// User对象class User {    private Integer id;    private String name;    private Integer age;    // 省略set,get,toString方法}// 构造数据public static List generateUserData() {    Random random = new Random();    List users = new ArrayList<>();    for (int i = 0; i < 1000; i++) {        users.add(new User(i, "user" + i, random.nextInt(100)));    }    return users;}

假设现在有一个场景,我们需要从上面的列表中选取年龄大于20岁的对象,在传统的容器操作中,一般我们会这样操作

public List getUserOlderThan20() {    List users = generateUserData();    List result = new ArrayList<>();    for (User user : users) {        if (user.getAge() > 20 ) {            result.add(user);        }    }    return result;}

而在Java8中,我们可以用更加简洁的方式来实现上面的操作

public List getUserOlderThan20() {    List users = generateUserData();    List result = users.stream()            .filter(user -> user.getAge() > 20)            .collect(Collectors.toList());    return result;}

或者上面的案例看上去并没有那么有优势,那么我们来看下下面的案例,根据年龄对用户进行分组,年龄在1-30为年轻人,31-60为中年人,60以上为老年人(例子例子,没有实际价值)

传统的操作,我们需要如下操作

public void groupUser() {    List users = generateUserData();    Map> userGroup = new HashMap<>();    for (User user : users) {        if (user.getAge() > 0 && user.getAge() <= 30) {            List young = userGroup.get("young");            if (young == null) {                young = new ArrayList<>();                userGroup.put("young", young);            }            userGroup.get("young").add(user);        }else if (user.getAge() <= 60) {            List middle = userGroup.get("middle");            if (middle == null) {                middle = new ArrayList<>();                userGroup.put("middle", middle);            }            userGroup.get("middle").add(user);        }else {            List old = userGroup.get("old");            if (old == null) {                old = new ArrayList<>();                userGroup.put("old", old);            }            userGroup.get("old").add(user);        }    }    System.out.println(userGroup);}

可以看到,上面的操作还是挺繁琐的,而且比较容易出错,而在Java8中,我们则可以采用如下操作

public void testStream() {    List users = generateUserData();    Map> result = users.stream()            .collect(Collectors.groupingBy(                            user -> {                                if (user.getAge() > 0 && user.getAge() <= 30) {                                    return "young";                                } else if (user.getAge() <= 60) {                                    return "middle";                                } else {                                    return "old";                                }}                            ));    System.out.println(result);}

可以看到,代码量以及自描述性的对比还是挺明显的,​​Stream​​配合​​Lambda​​表达式,可以使得之前比较繁琐的容器操作,变得非常简单,而且,代码本身的自解释性也更强

Stream操作

在前面我们已经见识到了​​Stream​​本身的特点--流式操作以及方便性,接下来我们来详细学习​​Stream​​的用法。

​Stream​​的操作可以分为两种,一种是中间操作,例如前面的​​filter()​​操作,一种是结束操作,例如前面的​​collect()​​操作,每一个中间操作,都返回一个​​Stream​​,经过本次处理之后的​​Stream​​,结束操作则产生终结,其结果要么是数字,要么是字符串,要么是集合等等,总之就不再是​​Stream​​,也就是说,一个​​Stream​​可以有多个中间操作,但只能有一个结束操作

中间操作

比较常用的几种中间操作列举如下,更多的内容参考API即可

​filter()​​,过滤操作,入参为​​Predicate predicate​​​​limit()​​,限制操作,入参为​​long maxSize​​​​skip()​​,跳过操作,入参为​​long n​​​​distinct()​​,去重操作,没有入参,底层使用的是​​Set​​进行去重​​sorted()​​,排序操作,可以传入自定义的比较器​​Comparator comparator​​​​peek()​​,检查操作,用于调试操作,入参​​Consumer action​​map()​​,将Stream中的元素映射为其他元素,入参​​Function mapper​​mapToDouble()​​,将Stream转为​​DoubleStream​​,避免装箱机制所带来的开销​​mapToLong()​​,将Stream转为​​LongStream​​,避免装箱机制所带来的开销​​mapToInt()​​,将Stream转为​​IntStream​​,避免装箱机制所带来的开销​​flatMap()​​,将多个Stream转为一个,注意与​​map()​​的区别,入参​​Function> mapper​

结束操作

比较常用的几个结束操作列举如下,更多的内容参考API即可

​count()​​,统计元素个数​​forEach()​​,对每个元素执行操作,入参​​Consumer action​​​​findFirst()​​,获取第一个元素​​findAny()​​,获取任意一个元素​​anyMatch()​​,检查元素是否至少有一个匹配,入参​​Predicate predicate​​​​allMatch()​​,检查所有元素是否都匹配,入参​​Predicate predicate​​collect()​​,将所有内容收集起来,入参​​Collector collector​​,JDK中提供了众多的​​Collector​​的实现,所以,基本上不用自己实现​groupingBy()​​,将内容进行分组,有三个不同的版本​​groupingBy(Function classifier)​​,仅能进行一次分组​​groupingBy(Function classifier, Collector downstream)​​,注意第二个参数可以是另一个​​Collector​​,也就是说,可以通过多次的复合,达到多次分组,或者分组后再进行其他的操作​​groupingBy(Function classifier,Supplier mapFactory, Collector downstream)​​,自己提供一个容器,而不是使用默认的容器​​counting()​​,等价于前面的​​Stream.count()​​​​partitioningBy()​​精简版的​​groupingBy()​​,仅能支持​​true​​、​​false​​两种分组​​joining()​​,字符串连接,需要注意,如果Stream的内容本身不是字符串流,则需要先​​map()​​操作一下,将其转为字符串流,可以指定分隔符,前缀,后缀​​toList()​​,将结果合并为List​​toSet()​​,将结果合并为Set​​toMap()​​,将结果转为Map​​toConcurrentMap()​​,将结果转为并发Map​reduce()​​,根据条件合并结果,可以说,上面的所有结束操作,基本上都可以通过​​reduce()​​来实现,​​reduce​​有三个不同形式的参数,当JDK所提供的合并操作不满足需求时,可以通过​​reduce​​来实现自定义的合并操作​​T reduce(T identity, BinaryOperator accumulator)​​​​Optional reduce(BinaryOperator accumulator)​​​ U reduce(U identity, BiFunction accumulator, BinaryOperator combiner)​

Stream操作实例

为了更好地理解上面的内容,我们通过几个小例子来实际操作一下

// 打印出年龄在30岁以上的所有用户    users.stream()        .filter(user -> user.getAge() > 30)        .forEach(System.out::println);        // 如果换成 .count(),则是统计用户的个数    // 分组并且统计各个分组的人数    Map collect = users.stream()                .collect(groupingBy(user -> {                    if (user.getAge() <= 30) {                        return "young";                    } else if (user.getAge() <= 60) {                        return "middle";                    } else {                        return "old";                    }                }, counting()));        // 分组并且去重    Map> collect = users.stream()                .collect(groupingBy(user -> {                    if (user.getAge() <= 30) {                        return "young";                    } else if (user.getAge() <= 60) {                        return "middle";                    } else {                        return "old";                    }                }, toSet()));

关于Stream的介绍,大致就到这里了,为了更好地掌握Stream,需要在实际使用中多加练习,多加研究才是

总结

本小节主要学习了Stream的内容,通过对比Stream与传统的Collection操作,可以看出,通过Stream来操作容器,代码将变得更加简洁,而且,其可阅读行也更强,出错的概率也会更低,毕竟不用再自己关心迭代的过程,最后,通过几个简单的小例子,展示了Stream中两种不同的操作,中间操作以及结束操作,当然,关于Stream的更多内容,还是需要在实际使用中不断发现,不断研究,加油。

标签: 我们需要 也就是说

上一篇:Linux:rinetd的安装部署以及端口转发
下一篇:天天观天下!Awk教程​